

While designing a database out of an entity-relationship model, the main problem existing in that "raw" database is redundancy. Redundancy is storing the same data item in more one place. A redundancy creates several problems like the following:

- *Extra storage space:* storing the same data in many places takes large amount of disk space.
- Insertion Anomaly: Entering same data more than once during data insertion.
- Deletion Anomaly: Deleting data from more than one place during deletion.
- *Modification Anomaly:* Modifying data in more than one place.
- Anomalies may occur in the database if insertion, deletion, modification etc are no done properly. It creates inconsistency and unreliability in the database.

To solve this problem, the "raw" database needs to be normalized. This is a step by step process of removing different kinds of redundancy and anomaly at each step. At each step a specific rule is followed to remove specific kind of impurity in order to give the database a slim and clean look.

Un-Normalized Form (UNF)

If a table contains non-atomic values at each row, it is said to be in UNF. An atomic value is something that can not be further decomposed. A nonatomic value, as the name suggests, can be further decomposed and simplified. Consider the following table:

Emp-Id	Emp-Name	Month	Sales	Bank-Id	Bank-Name
E01	AA	Jan	1000	B01	SBI
		Feb	1200		
		Mar	850		
E02	BB	Jan	2200	B02	UTI
		Feb	2500		
E03	CC	Jan	1700	B01	SBI
		Feb	1800		
		Mar	1850		
		Apr	1725		44 30

In the sample table above, there are multiple occurrences of rows under each key Emp-Id. Although considered to be the primary key, Emp-Id cannot give us the unique identification facility for any single row. Further, each primary key points to a variable length record (3 for E01, 2 for E02 and 4 for E03).

First Normal Form (1NF)						
A relation is said to be in 1NF if it contains no non-atomic values and each						
row can provide a unique combination of values. The above table in UNF						
can be processed to create the following table in 1NF.						

Emp-Id	Emp-Name	Month	Sales	Bank-Id	Bank-Name
E01	AA	Jan	1000	B01	SBI
E01	AA	Feb	1200	B01	SBI
E01	AA	Mar	850	B01	SBI
E02	BB	Jan	2200	B02	UTI
E02	BB	Feb	2500	B02	UTI
E03	CC	Jan	1700	B01	SBI
E03	CC	Feb	1800	B01	SBI
E03	CC	Mar	1850	B01	SBI
E03	CC	Apr	1725	B01	SBI

As you can see now, each row contains unique combination of values. Unlike in UNF, this relation contains only atomic values, i.e. the rows can not be further decomposed, so the relation is now in 1NF. So, A relation is in first normal form if it meets the definition of a relation:

- Each attribute (column) value must be a single value only.
- All values for a given attribute (column) must be of the same type.
- Each attribute (column) name must be unique.
- The order of attributes (columns) is insignificant
- No two tuples (rows) in a relation can be identical.
- The order of the tuples (rows) is insignificant.

Second Normal Form (2NF)

A relation is said to be in 2NF f if it is already in 1NF and each and every attribute fully depends on the primary key of the relation. Speaking inversely, if a table has some attributes which is not dependant on the primary key of that table, then it is not in 2NF.

Let us explain. Emp-Id is the primary key of the above relation. Emp-Name, Month, Sales and Bank-Name all depend upon Emp-Id. But the attribute Bank-Name depends on Bank-Id, which is not the primary key of the table. So the table is in 1NF, but not in 2NF. If this position can be removed into another related relation, it would come to 2NF.

Emp-Id	Emp-Name	Month	Sales	Bank-Id
E01	AA	JAN	1000	B01
E01	AA	FEB	1200	B01
E01	AA	MAR	850	B01
E02	BB	JAN	2200	B02
E02	BB	FEB	2500	B02
E03	CC	JAN	1700	B01
E03	CC	FEB	1800	B01
E03	CC	MAR	1850	B01
E03	CC	APR	1726	B01

Bank-Id	Bank-Name
B01	SBI
B02	UTI

After removing the portion into another relation we store lesser amount of data in two relations without any loss information. There is also a significant reduction in redundancy. Third Normal Form (3NF) A relation is said to be in 3NF, if it is already in 2NF and there exists no transitive dependency in that relation. Speaking inversely, if a table contains transitive dependency, then it is not in 3NF, and the table must be split to bring it into 3NF. What is a transitive dependency? Within a relation if we see $A \rightarrow B$ [B depends on A] And $B \rightarrow C$ [C depends on B] Then we may derive $A \rightarrow C$ [C depends on A] Such derived dependencies hold well in most of the situations. For example if we have Roll \rightarrow Marks And Marks \rightarrow Grade Then we may safely derive Roll \rightarrow Grade. This third dependency was not originally specified but we have derived it. The derived dependency is called a transitive dependency when such

dependency becomes improbable.

Third Normal Form (3NF)For example we have been givenRoll \rightarrow CityAndCity \rightarrow STDCodeIf we try to derive Roll \rightarrow STDCode it becomes a transitive dependency, because obviously the STDCode of a city cannot depend on the roll number issued by a school or college. In such a case the relation should be broken into two, each containing one of these two dependencies:Roll \rightarrow CityAndCity \rightarrow STD code

Boyce-Code Normal Form (BCNF)

A relationship is said to be in BCNF if it is already in 3NF and the left hand side of every dependency is a candidate key. A relation which is in 3NF is almost always in BCNF. These could be same situation when a 3NF relation may not be in BCNF the following conditions are found true.

- A relation is in BCNF if every determinant is a candidate key.
- Recall that not all determinants are keys.
- Those determinants that are keys we initially call *candidate keys*.
- Eventually, we select a single candidate key to be *the key* for the relation.

Consider the following example:

- **□** Funds consist of one or more Investment Types.
- **□** Funds are managed by one or more Managers
- □ Investment Types can have one more Managers
- □ Managers only manage one type of investment.

Relation:

FUNDS (FundID, InvestmentType, Manager)

1	FundID	InvestmentType	Manager	
7.4	99	Common Stock	Smith	
	99	Municipal Bonds	Jones	
	33	Common Stock	Green	
	22	Growth Stocks	Brown	
	11	Common Stock	Smith	
	FD1: FundID, Inv	vestmentType \rightarrow Man	lager	
	FD2: FundID, M	anager $ ightarrow$ Investment	Туре	
	FD3: Manager -	InvestmentType		
 In this can a candidate identify a t 	ase, the combir <i>e key</i> because we uple in the relatio	nation FundID a can use FundID, I on.	and InvestmentT InvestmentType t	ype form o uniquely
 Similarly, t key becaus 	he combination I e we can use Fund	FundID and Mana dID, Manager to u	ager also form a iniquely identify a	<i>candidate</i> tuple.

- Manager by itself is not a candidate key because we cannot use
 Manager alone to uniquely identify a tuple in the relation.
- Is this relation FUNDS(FundID, InvestmentType, Manager) in 1NF, 2NF or 3NF ?

Given we pick FundID, InvestmentType as the *Primary Key:* 1NF for sure.

2NF because all of the non-key attributes (Manager) is dependant on all of the key.

3NF because there are no transitive dependencies.

However consider what happens if we delete the tuple with FundID
 22. We loose the fact that Brown manages the InvestmentType "Growth Stocks."

Therefore, while FUNDS relation is in 1NF, 2NF and 3NF, it is in BCNF because not all determinants (Manager in FD3) are candidate keys.

The following are steps to normalize a relation into BCNF:

- I. List all of the determinants.
- II. See if each determinant can act as a key (candidate keys).
- III. For any determinant that is *not* a candidate key, create a new relation from the functional dependency. Retain the determinant in the original relation.

For example: Consider a relation R with attributes (student, subject, teacher).								
F: { (student, Teacher) -> subject (student, subject) -> Teacher	Student	Teacher	Subject					
Teacher -> subject}	Jhansi	P.Naresh	Database					
	jhansi	K.Das	С					
Candidate keys are (student_teacher) and (student_subject)	subbu	P.Naresh	Database					
The above relation is in 3NF [since there is no transitive	subbu	R.Prasad	С					
dependency].								
 A relation R is in BCNF if for every non-trivial FD X->Y, The above relation is not in BCNF, because in the FD is not a key. This relation suffers with anomalies – For example, if we try to delete the student Subbu, we that R. Prasad teaches C. These difficulties are caused determinant but not a candidate key. 	X must b (teacher we will lc d by the	e a key. >subject ose the inf fact the t), teacher formation teacher is					

Vendor Code	Item Code	Project No.
V1	I1	P1
V1	12	P1
V1	11	P3
V1	12	P3
V2	12	P1
V2	13	P1
V3	11	P2
V3	11	P3

The given relation has a number of problems. For example:

- If vendor V1 has to supply to project P2, but the item is not yet decided, then a row with a blank for item code has to be introduced.
- The information about item I1 is stored twice for vendor V3.

Observe that the relation given is in 3NF and also in BCNF. It still has the problem mentioned above. The problem is reduced by expressing this relation as two relations in the Fourth Normal Form (4NF).

A relation is in 4NF if it has no more than one independent multi valued dependency or one independent multi valued dependency with a functional dependency.

The table can be expressed as the two 4NF relations given as following. The fact that vendors are capable of supplying certain items and that they are assigned to supply for some projects in independently specified in the 4NF relation.

Vendo	Code	Item Code
V	1	11
V	1	12
V	2	12
V	2	13
V	3	11

Vendor Code	Project No.	
V1	P1	
V1	Р3	
V2	P1	
V3	P2	
	1.1.1	

Fifth Normal Form (5NF)

- A relation is in 5NF if it is in 4NF and not contains any join dependency and joining should be lossless.
- 5NF is satisfied when all the tables are broken into as many tables as possible in order to avoid redundancy.
- 5NF is also known as Project-join normal form (PJ/NF).

SUBJECT	LECTURER	SEMESTER
Computer	Anshika	Semester 1
Computer	John	Semester 1
Math	John	Semester 1
Math	Akash	Semester 2
Chemistry	Praveen	Semester 1

Example

In the table, John takes both Computer and Math class for Semester 1 but he doesn't take Math class for Semester 2. In this case, combination of all these fields required to identify a valid data.

Suppose we add a new Semester as Semester 3 but do not know about the subject and who will be taking that subject so we leave Lecturer and Subject as NULL. But all three columns together acts as a primary key, so we can't leave other two columns blank. So to make the above table into 5NF, we can decompose it into three										
relati	ions P1, P2	2 & P3:	SUBJEC	T LECI	URER	SEIV	IESTER			
			Compute	er An	shika	Sem	ester 1			
			Compute	er Jo	hn	Sem	ester 1			
	Math				John Seme		ester 1	ster 1		
Mat			Math	Akash Semester 2		ester 2				
			Chemist	ry Pra	veen	Sem	ester 1			
	Р	1			P2			P	3	
	SEMESTER	SUBJECT		SUBJEC	r LEC	TURER		SEMSTER	LECTURER	12
	Semester 1	Computer		Compute	er Ar	ishika		Semester 1	Anshika	X
	Semester 1	Math		Compute	er J	ohn		Semester 1	John	Σ.,
	Semester 1	Chemistry		Math	J	ohn		Semester 1	John	~
	Semester 2	Math		Math	A	kash		Semester 2	Akash	
				Chemist	y Pr	aveen		Semester 1	Praveen	

Input Relation	Transformation	Output Relation
All Relations	Eliminate variable length record. Remove multi-attribute lines in table.	1NF
1NF Relation	Remove dependency of non-key attributes on part of a multi-attribute key.	2NF
2NF	Remove dependency of non-key attributes on other non-key attributes.	3NF
3NF	Remove dependency of an attribute of a multi attribute key on an attribute of another (overlapping) multi-attribute key.	BCNF
BCNF	Remove more than one independent multi- valued dependency from relation by splitting relation.	4NF
4NF	Add one relation relating attributes with multi- valued dependency.	5NF